
METHODS FOR SPATIOTEMPORAL DITHERING

N
Jeffrey B. Mulligan

ASA Ames Research Center

1. Introduction

The problem of representing gray-level images

o
on a binary display device is known as "dithering"
r "halftoning." (A good survey can be found in

eUlichney ). Dithering relies upon the fact that th1

human visual system integrates information over
d

d
spatial regions, so that a spatial pattern of light an
ark can evoke a sensation approximating that of a

y
e
uniform gray area even when the individual displa
lements can be resolved. Electronic image display

d
devices, such as cathode ray tubes and flat panel
isplays offer the additional possibility of exploiting

o
i
the visual system’s integration in the time domain t
ncrease a display’s gray scale resolution; addition-

s
ally, it may be possible to exploit the visual
ystem’s spatiotemporal sensitivity to make dynamic

c
dithering noise which is less visible than the
orresponding static noise. In this paper we exam-

-
e
ine how a number of existing two-dimensional dith
ring methods may be generalized to three dimen-

2

sions.

. Temporal properties of vision

s
r

The potential power of these techniques i
ooted in the fact that the visual system has different

H
temporal responses to different image features.

alftoning algorithms may exploit this by hiding
h

h
high frequency noise in the perceptual bands whic
ave a low-pass response. One of the best examples

fl
is color: when two colored lights are exchanged or

ickered, the color will appear to alternate at low

1
flicker rates, but when the frequency is raised to
5-20 Hz, color flicker fusion occurs, where the

e
s
flicker is seen as a variation of intensity only. Th
ubject can eliminate all sensation of flicker by

h
p
balancing the intensities of the two lights (at whic
oint the lights are said to be equiluminant). When

r
c
the intensities are not balanced, the luminance flicke
an be seen at frequencies as high at 50-60 Hz.

c
The differential spatial properties of the

hromatic and achromatic systems have been
-exploited in several halftoning algorithms . Mulli2,3

g 2an proposed negatively correlating the dither
matrices in multi-component ordered dither to

reduce spatial luminance variation at the expense of

t
added chromatic noise. This can be done in the
emporal domain equally well. Mulligan and Ahu-

mada , and Balasubramanian, Carrara and4

3Allebach used different spatial error filters for
n

i
achromatic and chromatic quantization errors i
terative algorithms designed to find the visually

optimal halftone.

Other parameters besides color affect temporal
n

a
sensitivity. For example, the spatial frequency of a
chromatic pattern influences the temporal

-sensitivity . For low to medium spatial frequen5-11

cies, temporal sensitivity is bandpass with peak sen-

c
sitivity between 5-10 Hz, while for patterns above 4
ycles per degree temporal sensitivity becomes

3

lowpass.

. Algorithms

3.1. Dispersed dot ordered dither

l
c

The term ordered dither refers to a genera
lass of algorithms in which the array of desired

y
o
input values is compared with a corresponding arra
f threshold values. The output pixels are set or

p
cleared depending on the outcome of this com-
arison. "Dispersed dot" ordered dither usually

nrefers to the work of Bayer who demonstrated a12

l
u
algorithm for generating matrices which are optima
nder a certain set of assumptions. These matrices

-
f
insure that for any gray level, pixels are set in a uni
orm way across the cell.

Large dither matrices can be constructed using

n
a recursive algorithm. We start with the smallest
on-trivial matrix, in this case 2x2. We can gen-

y
a
erate two new matrices with twice the linear size b
) enlarging the original matrix by replicating each

m
entry; or b) replicating the entire matrix. We then

ultiply the entries of the second matrix by 4, and
e

fi
form the final matrix by adding the values from th

rst (enlarged) matrix. This process is illustrated in

u
figure 1. The procedure can be applied recursively
ntil the desired size of matrix is obtained.



T
Figure 1: Illustrates the generation of a 4 by 4 dither matrix from a 2 by 2 seed matrix.

he process of replication and rescaling may be applied recursively to generate arbitrarily

T

large matrices, and is easily extended to more dimensions (see text).

he matrices generated by this procedure are
e

2
completely determined by the starting matrix of siz
. If we ignore differences due to rotations and

e
t
reflections, then there are three possibilities for th
wo-dimensional case, one of which generates the

,
t
Bayer matrices. For any choice of the seed matrix
he algorithm insures that for any given level, the

b
number of set bits will differ by at most one
etween any pair of quadrants, and this principle

x
c
holds recursively for subquadrants. The seed matri
orresponding to the Bayer matrix produces a check-

w
erboard pattern when a density of 1/2 is requested,

hile the other two seed matrices produce patterns

c
of horizontal or vertical stripes. Empirically, the
heckerboard pattern is less visible, so it is the pat-

tern of choice.

The matrix enlargement algorithm is easily
n

t
generalized to three dimensions by replicating i
hree dimensions instead of two, multiplying the

d
a
entries of the input matrix by 8 instead of 4, an
dding this to each octant of the enlarged three

2
s
dimensional matrix. The number of possible 2x2x
eed matrices for the three dimensional case is much

larger than for the two-dimensional case. If (and

this is a big if) we ignore rotations in space-time
-

t
(6), as well as reflections (2) and purely spatial rota
ions (4), then the number of distinct seed matrices

h
is 8!/(6*2*8)=840. We can apply the following
euristics to reduce the search space: first, by anal-

r
ogy with the two-dimensional case, we might
equire that for a requested density of 0.5 that we

-
p
obtain a spatial checkerboard pattern in each tem
oral frame; secondly, we might require that the

e
s
checkerboards in frame 1 and frame 2 have opposit
patial phase. Another desireable constraint is that

e
for any input gray level, the number of thresholds
xceeded in each the two frames differ by at most 1.

m
A matrix that satisfies all of these properties

ay be constructed from the 2x2 seed matrix shown

m
in figure 1 as follows: the first frame is made by

ultiplying the matrix in figure 1 by 2. The second

9
temporal frame is formed by rotating this matrix by
0 degrees and adding 1 to each of the entries. This

(
seed cube can then be expanded to any desired size
which is a power of 2) by repeated application of

the algorithm described above.



3.2. Temporal Error Diffusion

The method known as error diffusion was
-introduced by Floyd and Steinberg , and is gen13

r
q
erally agreed to produce output images of highe
uality than those produced using ordered dither. It

e
is a serial process which proceeds as follows: at
ach pixel, the desired level is rounded to the

e
e
nearest quantization level, which is output. Th
rror is computed by subtracting the desired value

"
b
from the quantized value. This error is "diffused
y subtracting fractions of it from the desired values

f
h
of nearby unquantized pixels. The precise pattern o
ow the error is distributed determines the resulting

patterns.

The most obvious way to generalize this algo-

e
rithm to three dimensions is simply to diffuse the
rror with a three dimensional spread function. The

f
proportion of error which is diffused in the current
rame, as opposed to spread into the following

-
t
frame, can be used to shape the spatiotemporal spec
rum of the resulting quantization noise.

n
a

The principle of temporal error diffusion ca
lso be combined with any other two-dimensional

o
spatial dithering algorithm as follows: we first
btain a quantized image using any method we

-
t
choose. We then compute the error image by sub
racting the desired image from the quantized image.

m
The desired image for the second frame is then

odified by subtracting the error image from the
e

t
previous frame. This algorithm has the advantag
hat no extra filtering is required, and the individual

-
r
frames can be processed using a parallelizable algo
ithm such as ordered dither. There is little oppor-

p
tunity, however, to control the spatiotemporal
arameters of the resulting quantization noise.

3.3. Visually optimal methods

Because of the inherently serial way in which
,

i
pixels are processed in the error diffusion algorithm
t is impossible for a pixel to share its error equally

o
with all of its neighbors. This difficulty has been
vercome by a number of stochastic algorithms

fwhich have been proposed recently all o3,4,14-17

s
s
which do basically the same thing. First, a filter i
pecified which is applied to the error image. This

-
s
filter is usually designed to capture the contrast sen
itivity of the human visual system. The filtered

,
s
error image is then condensed to a single number
uch as the sum of the squared error, to give an

overall quality measure. Pixels are visited sequen-
e

t
tially and their states are changed so as to minimiz
he error measure. To increase the chances of

-
l
finding the global optimum, the technique of simu
ated annealing may be used, in which pixels are

l
e
occasionally set to states which increase the overal
rror measure, in order to escape from local minima.

s
The probability that these (usually unfavorable) tran-
itions occur is controlled by a parameter known as

s
the "temperature." The image is "annealed" by
lowly reducing the temperature. Eventually, the

-
i
image will "freeze" into a final state. The probabil
ty that this state is the global optimum increases as

the rate of cooling decreases.

Although this class of algorithm is the most
n

d
computationally intensive of those which have bee
iscussed, it has been recommended as a benchmark

s
o
because of the straightforward way in which model
f visual quality can be integrated with the halfton-

e
ing process. Unlike error diffusion, where the
ffective error filter must be obtained by recursive

e
i
application of the diffusion weights, here the finit
mpulse response filter that is applied to the error is

i
the filter with respect to which the error is minim-
zed. Thus for the three dimensional case it is a

g
d
fairly straightforward matter to design a filter usin
ata on spatiotemporal contrast sensitivity.

m
h

To date most applications of this algorith
ave used a single two-dimensional low pass filter

-
v
to model visibility. This type of filter has the disad
antage that it is not particularly sensitive to

s
t
oriented patterns for which the visual system seem
o have specialized detectors. This defect becomes

t
more pronounced if we apply this simple approach
o three dimensions. The spatiotemporal analog of

d
two-dimensional orientation is motion; a three
imensional lowpass filter tends to blur patterns

h
p
which move coherently through it, although suc
atterns may be quite visually salient. For results

t
which are truly visually optimal, we need to filter
he error in a manner more consistent with how we

i
believe the visual system processes the input
magery, namely with not one but an array of filters

tuned for different spatiotemporal orientations ,18

r
o
Visual models such as this will also be valuable fo
btaining objective measures of the performance of

s
the simpler algorithms described in the preceding
ections.



4. Conclusions

Spatiotemporal dithering is a potentially useful

d
way of extending the grayscale resolution of a
isplay device while at the same time reducing the

s
visibility of static artifacts. All of the two dimen-
ional spatial dithering algorithms currently in use

s
can be generalized to three dimensions in a fairly
traightforward manner.
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